You are on a gameshow and the host shows you three doors. Behind one door is a suitcase with $1 million in it, and behind the other two doors are sacks of coal. The host tells you to choose a door, and that the prize behind that door will be yours to keep. You point to one of the three doors. The host says, "Before we open the door you pointed to, I am going to open one of the other doors." He points to one of the other doors, and it swings open, revealing a sack of coal behind it. "Now I will give you a choice," the host tells you. "You can either stick with the door you originally chose, or you can choose to switch to the other unopened door." Should you switch doors, stick with your original choice, or does it not matter?
SEE ANSWER
You should switch doors.
There are 3 possibilities for the first door you picked:
You picked the first wrong door - so if you switch, you win
You picked the other wrong door - again, if you switch, you win
You picked the correct door - if you switch, you lose
Each of these cases are equally likely. So if you switch, there is a 2/3 chance that you will win (because there is a 2/3 chance that you are in one of the first two cases listed above), and a 1/3 chance you'll lose. So switching is a good idea.
Another way to look at this is to imagine that you're on a similar game show, except with 100 doors. 99 of those doors have coal behind them, 1 has the money. The host tells you to pick a door, and you point to one, knowing almost certainly that you did not pick the correct one (there's only a 1 in 100 chance). Then the host opens 98 other doors, leave only the door you picked and one other door closed. We know that the host was forced to leave the door with money behind it closed, so it is almost definitely the door we did not pick initially, and we would be wise to switch.
Search: Monty Hall problem
You are somewhere on Earth. You walk due south 1 mile, then due east 1 mile, then due north 1 mile. When you finish this 3-mile walk, you are back exactly where you started.
It turns out there are an infinite number of different points on earth where you might be. Can you describe them all?
It's important to note that this set of points should contain both an infinite number of different latitudes, and an infinite number of different longitudes (though the same latitudes and longitudes can be repeated multiple times); if it doesn't, you haven't thought of all the points.
Answer:- One of the points is the North Pole. If you go south one mile, and then east one mile, you're still exactly one mile south of the North Pole, so you'll be back where you started when you go north one mile.
To think of the next set of points, imagine the latitude slighty north of the South Pole, where the length of the longitudinal line around the Earth is exactly one mile (put another way, imagine the latitude slightly north of the South Pole where if you were to walk due east one mile, you would end up exactly where you started). Any point exactly one mile north of this latitude is another one of the points you could be at, because you would walk south one mile, then walk east a mile around and end up where you started the eastward walk, and then walk back north one mile to your starting point. So this adds an infinite number of other points we could be at. However, we have not yet met the requirement that our set of points has an infinite number of different latitudes.
To meet this requirement and see the rest of the points you might be at, we just generalize the previous set of points. Imagine the latitude slightly north of the South Pole that is 1/2 mile in distance. Also imagine the latitudes in this area that are 1/3 miles in distance, 1/4 miles in distance, 1/5 miles, 1/6 miles, and so on. If you are at any of these latitudes and you walk exactly one mile east, you will end up exactly where you started. Thus, any point that is one mile north of ANY of these latitudes is another one of the points you might have started at, since you'll walk one mile south, then one mile east and end up where you started your eastward walk, and finally, one mile north back to where you started.
You are visiting NYC when a man approaches you.
"Not counting bald people, I bet a hundred bucks that there are two people living in New York City with the same number of hairs on their heads," he tells you.
"I'll take that bet!" you say. You talk to the man for a minute, after which you realize you have lost the bet.
What did the man say to prove his case?
Answer:- This is a classic example of the pigeonhole principle. The argument goes as follows: assume that every non-bald person in New York City has a different number of hairs on their head. Since there are about 9 million people living in NYC, let's say 8 million of them aren't bald.
So 8 million people need to have different numbers of hairs on their head. But on average, people only have about 100,000 hairs. So even if there was someone with 1 hair, someone with 2 hairs, someone with 3 hairs, and so on, all the way up to someone with 100,000 hairs, there are still 7,900,000 other people who all need different numbers of hairs on their heads, and furthermore, who all need MORE than 100,000 hairs on their head.
You can see that additionally, at least one person would need to have at least 8,000,000 hairs on their head, because there's no way to have 8,000,000 people all have different numbers of hairs between 1 and 7,999,999. But someone having 8,000,000 is an essential impossibility (as is even having 1,000,000 hairs), So there's no way this situation could be the case, where everyone has a different number of hairs. Which means that at least two people have the same number of hairs.
You can easily "tile" an 8x8 chessboard with 32 2x1 tiles, meaning that you can place these 32 tiles on the board and cover every square.
But if you take away two opposite corners from the chessboard, it becomes impossible to tile this new 62-square board.
Can you explain why tiling this board isn't possible?
Answer:- The next number it: 13112221.
Each number describes the previous number.
Starting with 1, the second line describes it 11 (one 1).
Then the third line describes 11 as 21 (two 1's).
Then the fourth line describes 21 as 1211 (one 2, one 1).
This is the pattern.
You can hold it without seeing or touching it! What is that?
Answer:- Your breath.
You have 25 horses. When they race, each horse runs at a different, constant pace. A horse will always run at the same pace no matter how many times it races.
You want to figure out which are your 3 fastest horses. You are allowed to race at most 5 horses against each other at a time. You don't have a stopwatch so all you can learn from each race is which order the horses finish in.
What is the least number of races you can conduct to figure out which 3 horses are fastest?
Answer:- You should pick the house on the left. Specifically, there is a 2/3 chance that the family on the left has a girl, whereas there's only a 1/2 chance that the house on the right has a girl.
This is a very counterintuitive riddle. It seems like there should always be a 1/2 chance that a given child is a girl. And in fact there is. The key word there is "given". Because we are not asking about a "given" child for the house on the left. We are asking about what could be either child. Whereas for the house on the right, we are asking about a "given" child...specifically, we're asking about the younger child.
There are 3 possibilities for the children in the first house:
Younger Older
Girl Boy
Boy Girl
Boy Boy
There is no "Girl, Girl" option because we know the house on the left has at least one boy. Since each of these 3 options is equally likely, and 2 of them have one girl, there is a 2/3 chance of there being a girl in the house on the left.
For the house on the right, because we already know the older child is a boy, there are only two possibilities:
Younger Older
Girl Boy
Boy Boy
And as we can see, there is a 1/2 chance for the house on the right having a girl.
Search for: Boy or Girl paradox
You have been given the task of transporting 3,000 apples 1,000 miles from Appleland to Bananaville. Your truck can carry 1,000 apples at a time. Every time you travel a mile towards Bananaville you must pay a tax of 1 apple but you pay nothing when going in the other direction (towards Appleland). What is highest number of apples you can get to Bananaville?
Answer:- He will have 25 coconuts with him at the end. The trick is to reduce the number of sacks as you pass checkpoints. The first 10 checkpoints require 3 coconuts each, which empties his first sack. The next 15 checkpoints require 2 coconuts each, which will empty his second stack. Now, he is left with 1 sack and 5 more checkpoints. So, the 5 checkpoints will take 1 coconut each. Therefore, he will be left with 25 coconuts.
You have twelve balls, identical in every way except that one of them weighs slightly less or more than the balls.
You have a balance scale, and are allowed to do 3 weighings to determine which ball has the different weight, and whether the ball weighs more or less than the other balls.
What process would you use to weigh the balls in order to figure out which ball weighs a different amount, and whether it weighs more or less than the other balls?
Answer:- Take eight balls, and put four on one side of the scale, and four on the other.
If the scale is balanced, that means the odd ball out is in the other 4 balls.
Let's call these 4 balls O1, O2, O3, and O4.
Take O1, O2, and O3 and put them on one side of the scale, and take 3 balls from the 8 "normal" balls that you originally weighed, and put them on the other side of the scale.
If the O1, O2, and O3 balls are heavier, that means the odd ball out is among these, and is heavier. Weigh O1 and O2 against each other. If one of them is heavier than the other, this is the odd ball out, and it is heavier. Otherwise, O3 is the odd ball out, and it is heavier.
If the O1, O2, and O3 balls are lighter, that means the odd ball out is among these, and is lighter. Weigh O1 and O2 against each other. If one of them is lighter than the other, this is the odd ball out, and it is lighter. Otherwise, O3 is the odd ball out, and it is lighter.
If these two sets of 3 balls weigh the same amount, then O4 is the odd ball out. Weight it against one of the "normal" balls from the first weighing. If O4 is heavier, then it is heavier, if it's lighter, then it's lighter.
If the scale isn't balanced, then the odd ball out is among these 8 balls.
Let's call the four balls on the side of the scale that was heavier H1, H2, H3, and H4 ("H" for "maybe heavier").
Let's call the four balls on the side of the scale that was lighter L1, L2, L3, and L4 ("L" for "maybe lighter").
Let's also call each ball from the 4 in the original weighing that we know aren't the odd balls out "Normal" balls.
So now weigh [H1, H2, L1] against [H3, L2, Normal].
-If the [H1, H2, L1] side is heavier (and thus the [H3, L2, Normal] side is lighter), then this means that either H1 or H2 is the odd ball out and is heavier, or L2 is the odd ball out and is lighter.
-So measure [H1, L2] against 2 of the "Normal" balls.
-If [H1, L2] are heavier, then H1 is the odd ball out, and is heavier.
-If [H1, L2] are lighter, then L2 is the odd ball out, and is lighter.
-If the scale is balanced, then H2 is the odd ball out, and is heavier.
-If the [H1, H2, L1] side is lighter (and thus the [H3, L2, Normal] side is heavier), then this means that either L1 is the odd ball out, and is lighter, or H3 is the odd ball out, and is heavier.
-So measure L1 and H3 against two "normal" balls.
-If the [L1, H3] side is lighter, then L1 is the odd ball out, and is lighter.
-Otherwise, if the [L1, H3] side is heavier, then H3 is the odd ball out, and is heavier.
If the [H1, H2, L1] side and the [H3, L2, Normal] side weigh the same, then we know that either H4 is the odd ball out, and is heavier, or one of L3 or L4 is the odd ball out, and is lighter.
So weight [H4, L3] against two of the "Normal" balls.
If the [H4, L3] side is heavier, then H4 is the odd ball out, and is heavier.
If the [H4, L3] side is lighter, then L3 is the odd ball out, and is lighter.
If the [H4, L3] side weighs the same as the [Normal, Normal] side, then L4 is the odd ball out, and is lighter.
You have two lengths of rope. Each rope has the property that if you light it on fire at one end, it will take exactly 60 minutes to burn to the other end. Note that the ropes will not burn at a consistent speed the entire time (for example, it's possible that the first 90% of a rope will burn in 1 minute, and the last 10% will take the additional 59 minutes to burn).
Given these two ropes and a matchbook, can you find a way to measure out exactly 45 minutes?
Answer:- The key observation here is that if you light a rope from both ends at the same time, it will burn in 1/2 the time it would have burned in if you had lit it on just one end.
Using this insight, you would light both ends of one rope, and one end of the other rope, all at the same time. The rope you lit at both ends will finish burning in 30 minutes. Once this happens, light the second end of the second rope. It will burn for another 15 minutes (since it would have burned for 30 more minutes without lighting the second end), completing the 45 minutes.
You overhear a man talking to a clerk in a hardware store. The clerk says "One will cost you 12 cents, ten will cost your 24 cents, and one hundred will cost you 36 cents."
What is the man buying?
Answer:- The man is buying physical numbers to nail to the front of his house. Each number costs 12 cents, and so "1" will cost 12 cents, "10" will cost 24 cents, and "100" will cost 36 cents.
You write on me and secrets I can keep. In places never seen. I spin like a top. Though stiff as a board, I'm often described like a mop. What am I?
Answer:- A Floppy Disk.
Your friend pulls out a perfectly circular table and a sack of quarters, and proposes a game.
"We'll take turns putting a quarter on the table," he says. "Each quarter must lay flat on the table, and cannot sit on top of any other quarters. The last person to successfully put a quarter on the table wins."
He gives you the choice to go first or second. What should you do, and what should your strategy be to win?
Answer:- You should go first, and put a quarter at the exact center of the table.
Then, each time your opponent places a quarter down, you should place your next quarter in the symmetric position on the opposite side of the table.
This will ensure that you always have a place to set down our quarter, and eventually your oppponent will run out of space.
Your friend shows you two jars, one with 100 red marbles in it, the other with 100 blue marbles in it.
He proposes a game. He'll put the two jars behind his back and tell you to pick one of them at random. You'll then close your eyes, he'll hand you the jar you picked, and you'll pick a random marble from that jar.
You win if the marble you pick is blue, and you lose otherwise.
To give you the best shot at winning, your friend gives you the two jars before the game starts and says you can move the marbles around however you'd like, as long as all 200 marbles are in the 2 jars (that is, you can't throw any marbles away).
How should you move the marbles around to give yourself the best chance of picking a blue marble?
Answer:- Put one blue marble in one jar, and put the rest of the marbles in the other jar. This will give you just about a 75% chance of picking a blue marble.
