While mixing sand, gravel, and cement for the foundation of a house, a worker noticed a small bird hopping along the top of the foundation wall. The bird misjudged a hop and fell down one of the holes between the blocks. The bird was down too far for anyone to reach it and the hole was too small for it to fly out of. Someone suggested using two sticks to reach down into the hole and pull the bird out, but this idea was rejected for fear it would injure the fragile bird. What would be the easiest way to get the bird out of the hole without injuring it?
Answer:- Since they had plenty of sand available, they could pour a little at a time into the hole. The bird would constantly keep shifting its position so that it stood on the rising sand.
Who is bigger: Mr. Bigger, Mrs. Bigger, or their baby?
Answer:- The baby, because he is a little bigger.
Why are manhole covers round? Do manhole covers really need to be circular?
Answer:- Manhole covers are round so that they won't fall through the hole into the sewer below them. No matter how you turn the cover, you won't be able to push the cover through the hole.
However, if you were to have square manhole covers, you would be able to rotate the cover such that one of the edges of the square cover is lined up with the diagonal line of the square hole, which would allow the cover to fall through, causing countless problems that the general public would rather avoid.
Why did I throw the butter out of the window?
Answer:- Because I wanted to see the butterfly.
Why don't tigers like fast food?
Answer:- Because they can't catch it!
You always serve it, but nobody can ever eat it. What is that?
Answer:- A tennis ball.
You are a prisoner sentenced to death. The Emperor offers you a chance to live by playing a simple game. He gives you 50 black marbles, 50 white marbles and 2 empty bowls. He then says, "Divide these 100 marbles into these 2 bowls. You can divide them any way you like as long as you use all the marbles. Then I will blindfold you and mix the bowls around. You then can choose one bowl and remove ONE marble. If the marble is WHITE you will live, but if the marble is BLACK... you will die." How do you divide the marbles up so that you have the greatest probability of choosing a WHITE marble?
HINT: The answer does not guarantee 100% you will chose a white marble, but you have a much better chance.
Answer:- Place 1 white marble in the bowl, and place the rest of the marbles in the other bowl (49 whites, and 50 blacks). This way you begin a 50/50 chance of choosing the bowl with just one white marble, therefore life! BUT even if you choose the other bowl, you still have almost a 50/50 chance at picking one of the 49 white marbles.
You are blindfolded and 10 coins are place in front of you on table. You are allowed to touch the coins, but can't tell which way up they are by feel. You are told that there are 5 coins head up, and 5 coins tails up but not which ones are which.
How do you make two piles of coins each with the same number of heads up?
You can flip the coins any number of times.
Answer:- Make 2 piles with equal number of coins. Now, flip all the coins in one of the pile.
How this will work? lets take an example.
So initially there are 5 heads, so suppose you divide it in 2 piles.
Case:
P1 : H H T T T
P2 : H H H T T
Now when P1 will be flipped
P1 : T T H H H
P1(Heads) = P2(Heads)
Another case:
P1 : H T T T T
P2 : H H H H T
Now when P1 will be flipped
P1 : H H H H T
P1(Heads) = P2(Heads)
You are in a cabin and it is pitch black. You have one match on you. Which do you light first, the newspaper, the lamp, the candle, or the fire?
Answer:- You light the match first!
You are on a gameshow and the host shows you three doors. Behind one door is a suitcase with $1 million in it, and behind the other two doors are sacks of coal. The host tells you to choose a door, and that the prize behind that door will be yours to keep.
You point to one of the three doors. The host says, "Before we open the door you pointed to, I am going to open one of the other doors." He points to one of the other doors, and it swings open, revealing a sack of coal behind it.
"Now I will give you a choice," the host tells you. "You can either stick with the door you originally chose, or you can choose to switch to the other unopened door."
Should you switch doors, stick with your original choice, or does it not matter?
Answer:- You should switch doors.
There are 3 possibilities for the first door you picked:
You picked the first wrong door - so if you switch, you win
You picked the other wrong door - again, if you switch, you win
You picked the correct door - if you switch, you lose
Each of these cases are equally likely. So if you switch, there is a 2/3 chance that you will win (because there is a 2/3 chance that you are in one of the first two cases listed above), and a 1/3 chance you'll lose. So switching is a good idea.
Another way to look at this is to imagine that you're on a similar game show, except with 100 doors. 99 of those doors have coal behind them, 1 has the money. The host tells you to pick a door, and you point to one, knowing almost certainly that you did not pick the correct one (there's only a 1 in 100 chance). Then the host opens 98 other doors, leave only the door you picked and one other door closed. We know that the host was forced to leave the door with money behind it closed, so it is almost definitely the door we did not pick initially, and we would be wise to switch.
Search: Monty Hall problem
You are somewhere on Earth. You walk due south 1 mile, then due east 1 mile, then due north 1 mile. When you finish this 3-mile walk, you are back exactly where you started.
It turns out there are an infinite number of different points on earth where you might be. Can you describe them all?
It's important to note that this set of points should contain both an infinite number of different latitudes, and an infinite number of different longitudes (though the same latitudes and longitudes can be repeated multiple times); if it doesn't, you haven't thought of all the points.
Answer:- One of the points is the North Pole. If you go south one mile, and then east one mile, you're still exactly one mile south of the North Pole, so you'll be back where you started when you go north one mile.
To think of the next set of points, imagine the latitude slighty north of the South Pole, where the length of the longitudinal line around the Earth is exactly one mile (put another way, imagine the latitude slightly north of the South Pole where if you were to walk due east one mile, you would end up exactly where you started). Any point exactly one mile north of this latitude is another one of the points you could be at, because you would walk south one mile, then walk east a mile around and end up where you started the eastward walk, and then walk back north one mile to your starting point. So this adds an infinite number of other points we could be at. However, we have not yet met the requirement that our set of points has an infinite number of different latitudes.
To meet this requirement and see the rest of the points you might be at, we just generalize the previous set of points. Imagine the latitude slightly north of the South Pole that is 1/2 mile in distance. Also imagine the latitudes in this area that are 1/3 miles in distance, 1/4 miles in distance, 1/5 miles, 1/6 miles, and so on. If you are at any of these latitudes and you walk exactly one mile east, you will end up exactly where you started. Thus, any point that is one mile north of ANY of these latitudes is another one of the points you might have started at, since you'll walk one mile south, then one mile east and end up where you started your eastward walk, and finally, one mile north back to where you started.
You are visiting NYC when a man approaches you.
"Not counting bald people, I bet a hundred bucks that there are two people living in New York City with the same number of hairs on their heads," he tells you.
"I'll take that bet!" you say. You talk to the man for a minute, after which you realize you have lost the bet.
What did the man say to prove his case?
Answer:- This is a classic example of the pigeonhole principle. The argument goes as follows: assume that every non-bald person in New York City has a different number of hairs on their head. Since there are about 9 million people living in NYC, let's say 8 million of them aren't bald.
So 8 million people need to have different numbers of hairs on their head. But on average, people only have about 100,000 hairs. So even if there was someone with 1 hair, someone with 2 hairs, someone with 3 hairs, and so on, all the way up to someone with 100,000 hairs, there are still 7,900,000 other people who all need different numbers of hairs on their heads, and furthermore, who all need MORE than 100,000 hairs on their head.
You can see that additionally, at least one person would need to have at least 8,000,000 hairs on their head, because there's no way to have 8,000,000 people all have different numbers of hairs between 1 and 7,999,999. But someone having 8,000,000 is an essential impossibility (as is even having 1,000,000 hairs), So there's no way this situation could be the case, where everyone has a different number of hairs. Which means that at least two people have the same number of hairs.
